# UNIT 4

# KEY CONTENT AREA OF SCIENCE-

# UNDERSTANDING MATTER

DR.SUDESHNA VERMA ASSISTANT PROFESSOR IASE,BILASPUR

## INDEX

- Structure of atom and molecules, isotopes and isobars
- Periodic properties of elements (link to atomic structure)
- Types of chemical bonding and chemical reactions
- Element their extraction, purification of organic compound
- Acids, bases and salts
- Carbon
- Organic compounds classification and nomenclature of organic compound, isomerism organic compound
- Relationship between functioning of different organ systems
- Ecosystem structure and function
- Evolution Theories of Evolution, Human Evolution, diversity - level of Biodiversity, uses and threats of biodiversity, heredity, Ecological adaptations.

# Structure of atom and molecules, isotopes and isobars

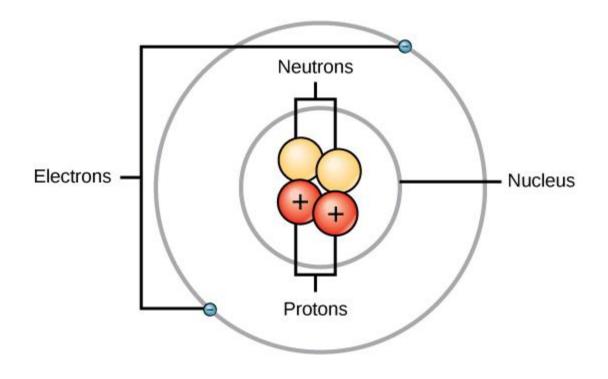
#### LEARNING OBJECTIVES

Discuss the electronic and structural properties of an atom

#### LEARNING OBJECTIVES

Discuss the properties of isotopes and their use in radiometric dating

#### **KEY TAKEAWAYS**


#### **Key Points**

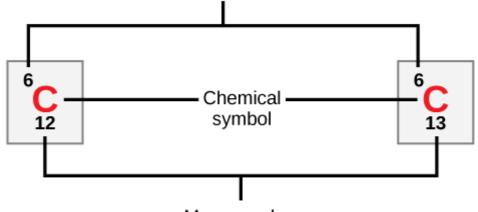
- An atom is composed of two regions: the nucleus, which is in the center of the atom and contains protons and neutrons, and the outer region of the atom, which holds its electrons in orbit around the nucleus.
- Protons and neutrons have approximately the same mass, about 1.67 × 10-24 grams, which scientists define as one atomic mass unit (amu) or one Dalton.
- Each electron has a negative charge (-1) equal to the positive charge of a proton (+1).
- Neutrons are uncharged particles found within the nucleus.

#### Key Terms

- atom: The smallest possible amount of matter which still retains its identity as a chemical element, consisting of a nucleus surrounded by electrons.
- proton: Positively charged subatomic particle forming part of the nucleus of an atom and determining the atomic number of an element. It weighs 1 amu.
- neutron: A subatomic particle forming part of the nucleus of an atom. It has no charge. It is equal in mass to a proton or it weighs 1 amu.

 An atom is the smallest unit of matter that retains all of the chemical properties of an element. Atoms combine to form molecules, which then interact to form solids, gases, or liquids. For example, water is composed of hydrogen and oxygen atoms that have combined to form water molecules. Many biological processes are devoted to breaking down molecules into their component atoms so they can be reassembled into a more useful molecule.




#### **Atomic Particles**

Atoms consist of three basic particles: protons, electrons, and neutrons. The nucleus (center) of the atom contains the protons (positively charged) and the neutrons (no charge). The outermost regions of the atom are called electron shells and contain the electrons (negatively charged). Atoms have different properties based on the arrangement and number of their basic particles.

The hydrogen atom (H) contains only one proton, one electron, and no neutrons. This can be determined using the atomic number and the mass number of the element (see the concept on atomic numbers and mass numbers).

| Protons, Neutrons, and Electrons |        |          |          |  |  |  |  |  |  |  |  |
|----------------------------------|--------|----------|----------|--|--|--|--|--|--|--|--|
|                                  | Charge | Location |          |  |  |  |  |  |  |  |  |
| Proton                           | +1     | 1        | nucleus  |  |  |  |  |  |  |  |  |
| Neutron                          | 0      | 1        | nucleus  |  |  |  |  |  |  |  |  |
| Electron                         | -1     | 0        | orbitals |  |  |  |  |  |  |  |  |

#### Atomic number



Mass number

#### What is an Isotope?

Isotopes are various forms of an element that have the same number of protons but a different number of neutrons. Some elements, such as carbon, potassium, and uranium, have multiple naturally-occurring isotopes. Isotopes are defined first by their element and then by the sum of the protons and neutrons present. •Carbon-12 (or <sup>12</sup>C) contains six protons, six neutrons, and six electrons; therefore, it has a mass number of 12 amu (six protons and six neutrons).

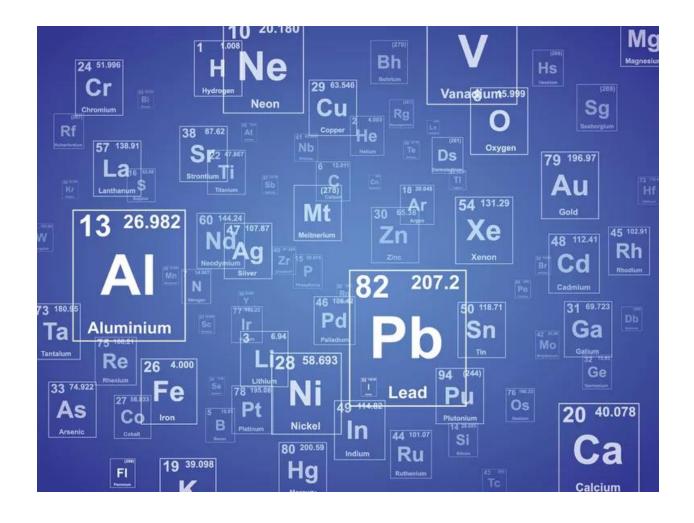
•Carbon-14 (or <sup>14</sup>C) contains six protons, eight neutrons, and six electrons; its atomic mass is 14 amu (six protons and eight neutrons).

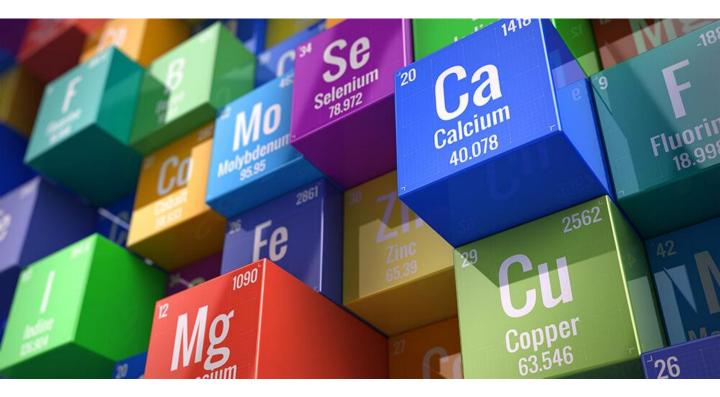
While the mass of individual isotopes is different, their physical and chemical properties remain mostly unchanged.

Isotopes do differ in their stability. Carbon-12 (<sup>12</sup>C) is the most abundant of the carbon isotopes, accounting for 98.89% of carbon on Earth. Carbon-14 (<sup>14</sup>C) is unstable and only occurs in trace amounts. Unstable isotopes most commonly emit alpha particles (He<sup>2+</sup>) and electrons. Neutrons, protons, and positrons can also be emitted and electrons can be captured to attain a more stable atomic configuration (lower level of potential energy ) through a process called radioactive decay.

#### Isobars

- · Species or atoms having same atomic mass number but different atomic number
- For example  ${}^{14}_6C$ ,  ${}^{14}_7N$
- They have the same number of nucleons i.e sum of protons and neutrons are same but Number of protons and neutrons alone varies between them


| Isotope                      | Protons(P) | Neutrons(N) | Sum(P+N) | Electrons |
|------------------------------|------------|-------------|----------|-----------|
|                              | 6          | 8           | 14       | 6         |
| <sub>6</sub> C <sup>14</sup> |            |             |          |           |
| 7N <sup>14</sup>             | 7          | 7           | 14       | 7         |

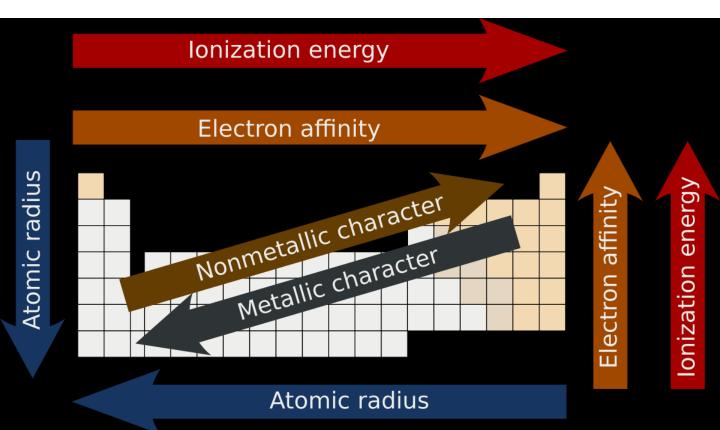

 Chemical properties depends on Atomic Number, So isobars are different chemical elements and have different chemical properties

Examples of Isobars:  $\begin{array}{l} \text{(i)}_{32}^{76}Ce, {}_{34}^{76}Se \\ \text{(ii)}_{26}^{58}Fe, {}_{28}^{58}Ni \\ \text{(iii)}\, {}_{18}^{40}Ar, {}_{19}^{40}K, {}_{20}^{40}Cr \\ \text{(iv)}\, {}_{11}^{24}Na, {}_{12}^{24}Mg \\ \text{(v)}\, {}_{27}^{64}Co, {}_{28}^{64}Ni \end{array}$ 

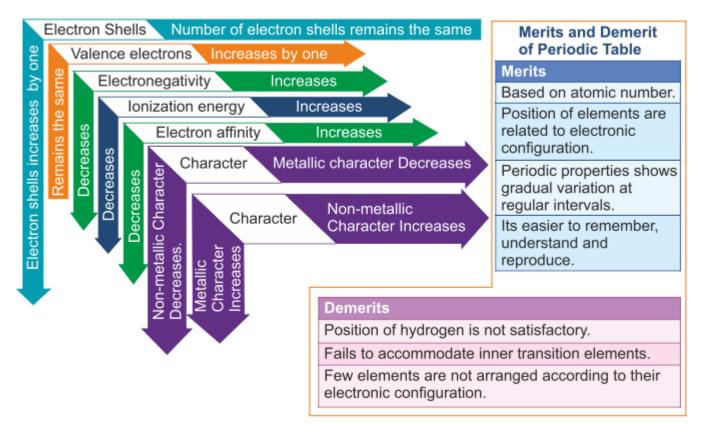
| Isotopes                                                        | Isobars                                                   |
|-----------------------------------------------------------------|-----------------------------------------------------------|
| Isotopes are different atomic structure of same                 | Isobars are different elements having same                |
| elements having same atomic number but                          | Atomic mass number but different atomic                   |
| different atomic mass number                                    | number                                                    |
| Atomic Number is same                                           | Atomic Number are different                               |
| Chemical properties are same                                    | Chemical properties are different as different<br>element |
| Physical properties are different                               | Physical properties can be same                           |
| Number of protons & electrons are same.<br>Neutrons only differ | All neutrons, protons, and electrons differ               |

## Periodic Properties of Elements






| 1<br>H<br>Hydrogen   |                       |                      |                                   |                      |                          |                        |                       |                     |                           |                        |                     |                        |                        |                                   |                             |                         | He                     |
|----------------------|-----------------------|----------------------|-----------------------------------|----------------------|--------------------------|------------------------|-----------------------|---------------------|---------------------------|------------------------|---------------------|------------------------|------------------------|-----------------------------------|-----------------------------|-------------------------|------------------------|
| 3<br>Li<br>Lithium   | 4<br>Be<br>Beryllium  |                      |                                   |                      |                          |                        |                       |                     |                           |                        |                     | 5<br>B<br>Boron        | 6<br>C<br>Carbon       | 7<br><b>N</b>                     | 8<br><b>0</b>               | ۴                       | 10<br>Ne               |
| 11<br>Na<br>Sodium   | 12<br>Mg<br>Magnesium |                      |                                   |                      |                          |                        |                       |                     |                           |                        |                     | 13<br>Aluminum         | 14<br>Si<br>Silicon    | Nitrogen<br>15<br>P<br>Phosphorus | 0xygen<br>16<br>S<br>Sulfur | 17<br>CI<br>Chlorine    | 18<br>Ar               |
| 19<br>K<br>Potassium | 20<br>Ca<br>Calcium   | 21<br>Sc<br>Scandium | 22<br><b>Ti</b><br>Titanium       | 23<br>V<br>Vanadium  | 24<br>Cr<br>Chromium     | 25<br>Mn<br>Manganese  | Fe<br>Iron            | 27<br>Co<br>Cobalt  | 28<br>Ni<br>Nicket        | 29<br>Cu<br>Copper     | 30<br>Zn<br>Zinc    | 31<br>Ga<br>Gallium    | 32<br>Ge<br>Germanium  | 33<br>As<br>Arsenic               | 34<br>Se<br>Selenium        | 35<br>Br<br>Bromine     | Argon<br>36<br>Kryptor |
| 37<br>Rb<br>Rubidium | 38<br>Sr<br>Strontium | 39<br>Y              | 40<br>Zr<br>Zircanium             | 41<br>Nb<br>Nicbium  | 42<br>Mo<br>Molybdenum   | 43<br>TC<br>Technetium | 44<br>Ru<br>Buthenium | 45<br>Rh<br>Bhadium | 46<br>Pd<br>Palladium     | 47<br>Ag<br>Silver     | 48<br>Cd<br>Cadmium | 49<br>In<br>Indium     | 50<br>Sn<br>Tin        | 51<br>Sb<br>Antimony              | 52<br>Te<br>Tellurium       | 53                      | 54<br>Xenor            |
| 55<br><b>Cs</b>      | 56<br>Ba<br>Barlum    | 57-71                | 72<br>Hf<br>Hafnium               | 73<br>Ta             | 74<br>W                  | 75<br>Re<br>Rhenium    | 76<br>Os<br>Osmium    | 77<br>Ir<br>Iridium | 78<br>Pt<br>Platinum      | 79<br>Au<br>Gold       | 80<br>Hg<br>Mercury | 81<br>TI<br>Thailium   | 82<br>Pb               | 83<br>Bi                          | 84<br>Po<br>Potonium        | 85<br>At<br>Astatine    | 86<br>Rr<br>Bado       |
| 87<br>Fr<br>Francium | 88<br>Ra<br>Radium    | 89-103               | 104<br><b>Rf</b><br>Rutherfordium | 105<br>Db<br>Dubnium | 106<br>Sg<br>Seaborgium  | 107<br>Bh<br>Bohrium   | 108<br>HS<br>Hassium  | 109<br>Mt           | 110<br>DS<br>Darmstadtium | Rg                     | 112<br>Copernicium  | 113<br>Nh<br>Nihonium  | 114<br>Fl<br>Flerovium | 115<br>MC<br>Mascovium            | 116<br>LV<br>Livermorium    | 117<br>TS<br>Tennessine |                        |
| Trancion             | Hadidin               |                      | 57                                | 58                   | 59                       | 60                     | 61                    | 62                  | 63                        | 64                     | 65                  | 66<br>Dar              | 67                     | 68<br>Er                          | 69<br>Tm                    | 70<br><b>Yb</b>         | 71<br>Lu               |
|                      |                       |                      | Lanthanum                         | Cerium               | Pr<br>Praseodymium       | Nd<br>Neodymium        | Promethium<br>93      | Sm<br>Samarium      | Eu<br>Europium<br>95      | Gd<br>Gadolinium<br>96 | Tb<br>Terbium<br>97 | Dy<br>Dysprosium<br>98 | Ho<br>Holmium          | Erbium                            | Thulium<br>101              | Ytterblum               | Luteti<br>10           |
|                      |                       |                      | 89<br>AC                          | 90<br>Th<br>Thorium  | 91<br>Pa<br>Protactinium | 92<br>U<br>Uranium     | Neptunium             | Plutonium           | Americium                 | Cm                     | Berkelium           | Cf                     | Es                     | Fm                                | Md<br>Mendelevium           | No                      | Lawren                 |


The periodic table arranges the elements by periodic properties, which are recurring trends in physical and chemical characteristics. These trends can be predicted merely by examining the periodic table and can be explained and understood by analyzing the electron configurations of the elements.

Elements tend to gain or lose valence electrons to achieve stable octet formation. Stable octets are seen in the inert gases, or noble gases, of Group VIII of the periodic table. In addition to this activity, there are two other important trends. First, electrons are added one at a time moving from left to right across a period.

As this happens, the electrons of the outermost shell experience increasingly strong nuclear attraction, so the electrons become closer to the nucleus and more tightly bound to it. Second, moving down a column in the periodic table, the outermost electrons become less tightly bound to the nucleus. This happens because the number of filled principal energy levels (which shield the outermost electrons from attraction to the nucleus) increases downward within each group.



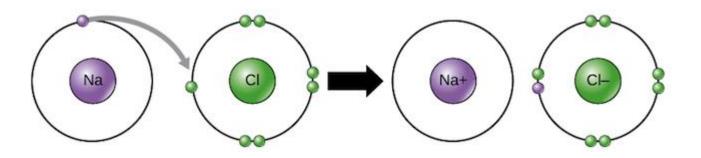
#### **Periodic Properties**



| Properties               | Across the period<br>(left to right)                        | Down the group<br>(top to bottom)                                                                 |  |  |  |  |  |
|--------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Atomic size              | Decreases                                                   | Increases                                                                                         |  |  |  |  |  |
| No. of valence electrons | Increases                                                   | Remains same                                                                                      |  |  |  |  |  |
| Metallic character       | Decreases                                                   | Increases                                                                                         |  |  |  |  |  |
| Non-metallic character   | Increases                                                   | Decreases                                                                                         |  |  |  |  |  |
| Electron affinity        | Increases                                                   | Decreases                                                                                         |  |  |  |  |  |
| Electronegativity        | Increases                                                   | Decreases                                                                                         |  |  |  |  |  |
| lonisation energy        | Increases                                                   | Decreases                                                                                         |  |  |  |  |  |
| Basic nature of oxides   | Decreases                                                   | Increases                                                                                         |  |  |  |  |  |
| Melting point            | Increases from Group I to<br>Group IV and then<br>decreases | Decreases in Groups I and II<br>Decreases in Groups III and<br>IV<br>Increases in Groups V to VII |  |  |  |  |  |
| Boiling point            | Increases from Group I to<br>Group IV and then<br>decreases | Decreases in Groups I and II<br>Decreases in Groups III and<br>IV<br>Increases in Groups V to VII |  |  |  |  |  |
| Oxidising nature         | Increases                                                   | Decreases                                                                                         |  |  |  |  |  |
| Reducing nature          | Decreases                                                   | Increases                                                                                         |  |  |  |  |  |

# Types of chemical bonding and chemical reactions

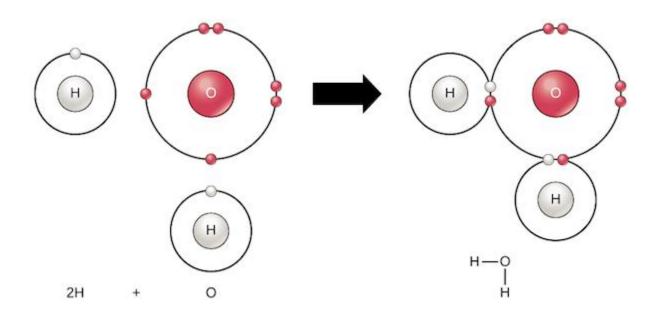
Why form chemical bonds? The basic answer is that atoms are trying to reach the most stable (lowestenergy) state that they can. Many atoms become stable when their valence shell is filled with electrons or when they satisfy the octet rule (by having eight valence electrons). If atoms don't have this arrangement, they'll "want" to reach it by gaining, losing, or sharing electrons via bonds.


#### Ions and ionic bonds

Some atoms become more stable by gaining or losing an entire electron (or several electrons). When they do so, atoms form **ions**, or charged particles. Electron gain or loss can give an atom a filled outermost electron shell and make it energetically more stable.

#### **Forming ions**

Ions come in two types. **Cations** are positive ions formed by losing electrons. For instance, a sodium atom loses an electron to become a sodium cation. Negative ions are formed by electron gain and are called **anions**. Anions are named using the ending "-ide": for example, the anion of chlorine is called chloride.


When one atom loses an electron and another atom gains that electron, the process is called **electron transfer**. Sodium and chlorine atoms provide a good example of electron transfer.



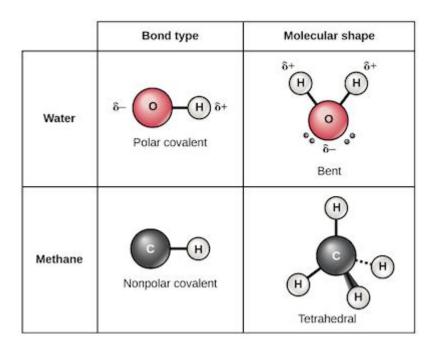
#### **Covalent bonds**

Another way atoms can become more stable is by sharing electrons (rather than fully gaining or losing them), thus forming **covalent bonds**. Covalent bonds are more common than ionic bonds in the molecules of living organisms.

For instance, covalent bonds are key to the structure of carbonbased organic molecules like our DNA and proteins. Covalent bonds are also found in smaller inorganic molecules, such as H2O, CO2, O2. One, two, or three pairs of electrons may be shared between atoms, resulting in single, double, or triple bonds, respectively. The more electrons that are shared between two atoms, the stronger their bond will be.



The shared electrons split their time between the valence shells of the hydrogen and oxygen atoms, giving each atom something resembling a complete valence shell (two electrons for H, eight for O). This makes a water molecule much more stable than its component atoms would have been on their own.


#### Polar covalent bonds

There are two basic types of covalent bonds: polar and nonpolar. In a **polar covalent bond**, the electrons are unequally shared by the atoms and spend more time close to one atom than the other. Because of the unequal distribution of electrons between the atoms of different elements, slightly positive ( $\delta$ +) and slightly negative ( $\delta$ -) charges develop in different parts of the molecule.

In a water molecule (above), the bond connecting the oxygen to each hydrogen is a polar bond. Oxygen is a much more **electronegative** atom than hydrogen, meaning that it attracts shared electrons more strongly, so the oxygen of water bears a partial negative charge (has high electron density), while the hydrogens bear partial positive charges (have low electron density).

#### Nonpolar covalent bonds

**Nonpolar covalent bonds** form between two atoms of the same element, or between atoms of different elements that share electrons more or less equally. For example, molecular oxygen O2 is nonpolar because the electrons are equally shared between the two oxygen atoms.



#### **Types of Chemical Reactions**

#### 1. Synthesis reactions

Two or more reactants combine to make 1 new product.

Examples:

 $C(s) + O_2(g) \rightarrow CO_2(g)$ 

 $\mathrm{H_2O}(l) + \mathrm{SO}_3(g) \to \mathrm{H_2SO}_4(\mathrm{aq})$ 

#### 2. Decomposition reactions

A single reactant breaks down to form 2 or more products.

Examples:

 $H_2CO_3(aq) \rightarrow H_2O(l) + CO_2(g)$ 

 $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$ 

#### 3. Single-replacement reactions

A single element replaces a similar element of an adjacent reactant compound.

Examples:

 $Zn(s) + CuSO_4(aq) \rightarrow ZnSO_4(aq) + Cu(s)$ 

#### 4. Double-replacement reactions

Two ionic compounds exchange ions, producing 2 new ionic compounds.

Examples:

 $NaCl(aq) AgNO_3(aq) \rightarrow NaNO_3(aq) + AgCl(s)$ 

 $HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(l)$ 

#### 5. Combustion reactions

A single element or compound combines with oxygen gas releasing energy. This rapid oxidation is called burning.

Examples:

 $C(s) + O_2(g) \rightarrow CO_2(g) + energy$ 

 $2\mathrm{Mg}(\mathrm{s}) + \mathrm{O}_2(\mathrm{g}) \to 2\mathrm{MgO}(\mathrm{s}) + \mathrm{energy}$ 

#### Single-replacement activity

- 1. Hold the test tube containing 0.5 M  $\rm CuSO_4$  solution at a 45° angle and insert the nail.
- 2. Place the test tube in the test tube rack. What happens?
- 3. If you use a plain iron nail, here is the reaction:

 $Fe(s) + CuSO_4(aq) \rightarrow \_\_\_\_(aq) + \_\_\_\_(s)$ 

A galvanized nail (coated with Zn), undergoes a different reaction:

 $Zn(s) + CuSO_4(aq) \rightarrow \_\_\_\_(aq) + \_\_\_\_(s)$ 

4. Complete and balance both equations.

#### Double-replacement activity

- 1. Pour the baking soda (sodium hydrogen carbonate, NaHCO<sub>3</sub>) from the spoon into the 250-mL beaker containing the vinegar (acetic acid,  $HC_2H_3O_2$ ).
- 2. Describe what happens.
- 3. Complete and balance the equation below for this reaction:

 $NaHCO_3 + HC_2H_3O_2 \rightarrow \_\_\_\_(aq) + \_\_\_\_(aq)$ 

4. One of the products, carbonic acid (H<sub>2</sub>CO<sub>3</sub>), immediately decomposes into water and a gas. Complete and balance this equation, and identify the gas with a flaming or glowing splint:

 $H_2CO_3 \rightarrow H_2O + \_\_\_\_(g)$ 

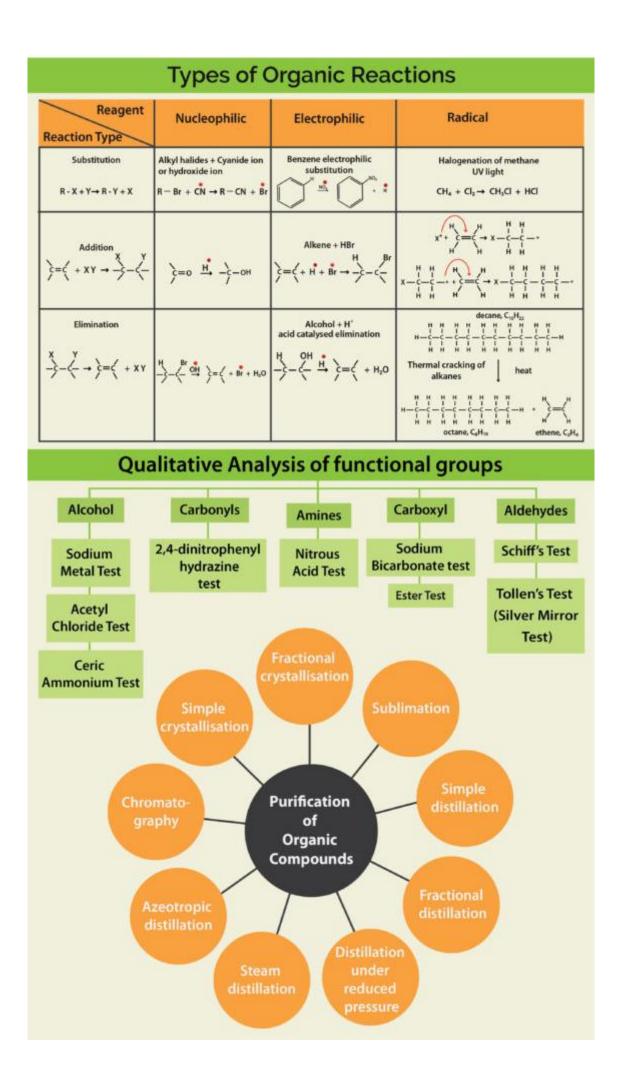
# Element - their extraction, purification of organic compound

#### **Types of Purification**

A large number of methods are available for the purification of substances. The choice of method, however, depends upon the nature of substance (whether solid or liquid). It also depends on the type of impurities present in it. Commonly used these methods for purification of substances:

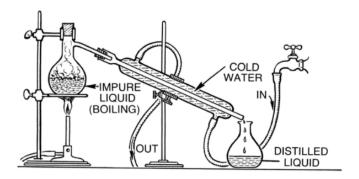
- •Simple crystallisation
- •Fractional crystallisation
- Sublimation
- •Simple distillation
- •Fractional distillation
- •Distillation under reduced pressure
- Steam distillation
- Azeotropic distillation
- Chromatography

## Simple Crystallisation


This is the most common method that we use to purify organic solids. For crystallisation, a suitable solvent is one:

•which dissolves more of the substance at a higher temperature than at room temperature

•in which impurities are either insoluble or dissolve to an extent that they remain in solution (in the mother liquor) upon crystallization


•which is not highly inflammable

•which does not react chemically with the compound to be crystallized. The most commonly-used solvents for crystallisation are water, alcohol, ether, chloroform, carbontetrachloride, acetone, benzene, petroleum ether etc.



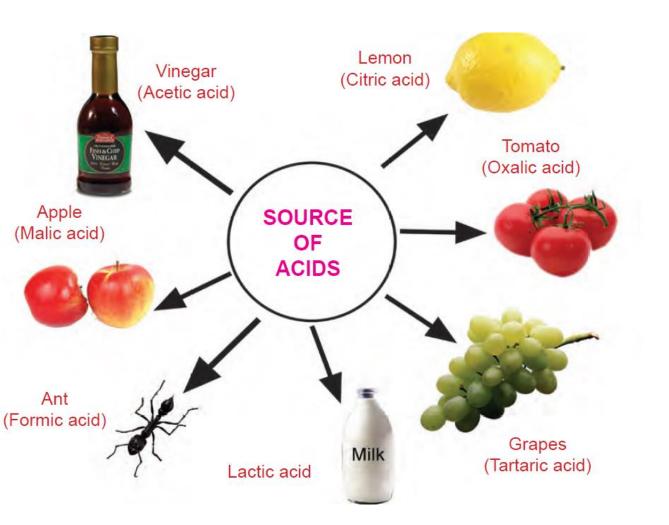
#### Simple Distillation

Distillation is the joint process of vapourisation and condensation. We use this method for the purification of liquids which boil without decomposition and contain non-volatile impurities. We can also use this method for separating liquids having sufficient difference in their boiling points.

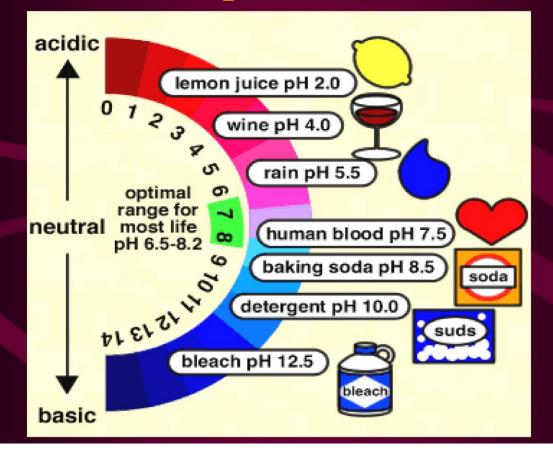


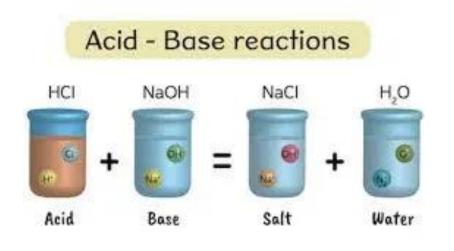
## Solved Examples for You

Question: Give two practical applications of simple crystallisation.


Answer: Practical applications of simple crystallisation include:

Sugar having an impurity of common salt can be crystallized from hot ethanol since sugar dissolves in hot ethanol but common salt does not.
A mixture of benzoic acid and naphthalene can be separated from hot water in which benzoic acid dissolves but naphthalene does not.


**Chromatography**: It is a technique used to separate mixtures in to their components, purify. Compounds which can be solid or liquid and also test the purity of compounds.


- In this technique the mixture of substances are applied on to a stationary phase .Then a pure solvent or a mixture of solvents is allowed to move slowly over stationary phase .The components of mixture gets gradually separated from one another .The moving phase is mobile phase .
- The chromatography is classified into two categories:
- Adsorption chromatography
- Partition chromatography

# Acids, bases and salts



## pH Scale



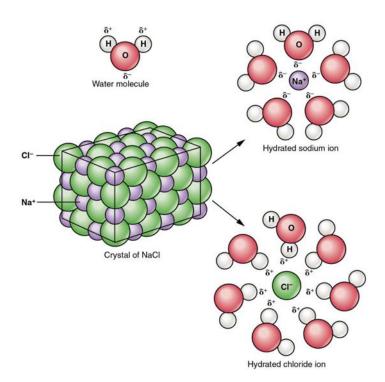


## Acids

Acidity is a characteristic property of acids. Acidic substances are usually very sour. Apart from hydrochloric acid, there are many other types of acids around us. Citrus fruits like lemons and oranges contain citric and ascorbic acids while tamarind paste contains tartaric acid.

In fact, the word 'acid' and 'acidity' are derived from the Latin word 'acidus' which means sour. If you dip a blue litmus paper into an acid, it will turn red while a red litmus paper will not change colour. Acids also liberate dihydrogen when they react with some metals.

## Bases


Bases turn red litmus paper blue while the blue litmus paper stays blue. They taste bitter and also feel soapy. Some other common examples of bases include sodium bicarbonate that is used in cooking and household bleach.

### Salts

Apart from sodium chloride, other common salts are sodium nitrate, barium sulfate etc. Sodium chloride or common salt is a product of the reaction between the hydrochloric acid (acid) and sodium hydroxide (base). Solid sodium chloride is made of a cluster of positively charged sodium ions and negatively charged chloride ions held together by electrostatic forces.

Electrostatic forces between opposite charges are inversely proportional to the dielectric constant of the medium. In other words, we can say that a compound that has acidity in its nature and a compound that has basicity as its nature, may yield salts when combined together.

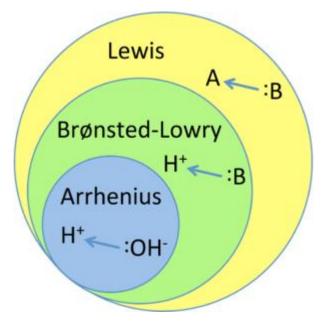
The universal solvent, water, has a dielectric constant of 80. Therefore, when sodium chloride is dissolved in water, the dielectric constant of water reduces the electrostatic force, allowing the ions to move freely in the solution. They are also well-separated due to hydration with water molecules.



## Ionization And Dissociation

Dissociation is the separation of ions from an ionic crystal when a solid ionic compound dissolves in water. On the other hand, ionization is the process where a neutral molecule breaks into charged ions when dissolved in a solution. The extent of ionization depends on the strength of the bonds between ions and the extent of solvation of ions.

## Arrhenius Concept


According to Arrhenius concept, Substances which produce  $H^+$  ions when dissolved in water are called acids while those which ionize in water to produce  $OH^-$  ions are called bases.

 $HA \rightarrow H^+ + A^-$  (Acid) BOH →  $B^+ + OH^-$  (Base)

Arrhenius proposed that acid-base reactions are characterized by acids if they dissociate in aqueous solution to form hydrogen ions  $(H^+)$  and bases if they form hydroxide  $(OH^-)$  ions in aqueous solution.

## **Bronsted-Lowry Concept**

Bronsted and Lowry in 1923 independently proposed a more general definition of acids and bases. According to them, an acid is defined as any hydrogen-containing material (molecule, anion or cation) which can donate a proton to other substance and a Base is any substance(molecule, cation or anion) that can accept a proton from any other substance. Therefore, acids are proton donor whereas bases are proton acceptor.



Acid-base pairs in which the members of reaction can be formed from each other by the gain or loss of protons are called conjugate acid-base pairs.

### Lewis Concept

According to Lewis theory of acid-base reactions, bases donate pairs of electrons and acids accept pairs of electrons. Thus, it can be said that a Lewis acid is electron-pair acceptor.

The advantage of the Lewis theory is that complements the model of oxidationreduction reactions. Oxidation-reduction reactions take place on a transfer of electrons from one atom to another, with a net change in the oxidation number of one or more atoms.

The Lewis theory further suggested that acids react with bases and share a pair of electrons but there is no change in the oxidation numbers of any atoms. Either an electron is transferred from one atom to another, or the atoms come together to share a pair of electrons.

 $Al(OH)_3 + 3H^+ \rightarrow Al^{3+} + 3H_2O$  (Aluminium hydroxide is acting as a base)

 $Al(OH)_3 + OH^- \rightarrow Al(OH)^{4-}$  (Aluminium hydroxide is acting as an acid)

These reactions are showing clearly: When Aluminium hydroxide accepts protons, it acts as a base. When it accepts electrons, it acts as an acid. This Lewis acid-base theory also explains why non-metal oxides such as carbon dioxide dissolve in  $H_2O$  to form acids, such as carbonic acid  $H_2CO_3$ .

## Solved Example for You

Question: Whether the following ions or molecules can act as Lewis acid or a Lewis base?

- Ag<sup>+</sup>
- NH<sub>3</sub>

Solution:

- A silver cation is Lewis acid
- Ammonia is Lewis base

Carbon, Organic compounds classification and nomenclature of organic compound, isomerism organic compound

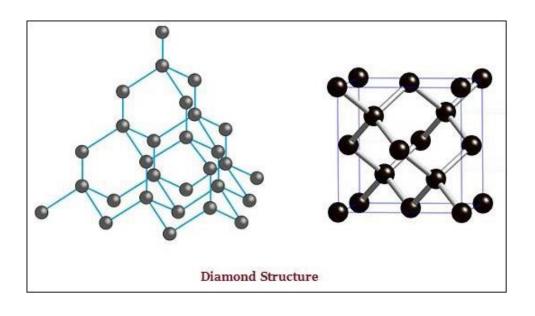
#### Introduction:

Carbon plays very important roles for all living beings.

The amount of carbon in the earth's crust is merely 0.02%, which is available in the form of minerals such as carbonates, hydrogen-carbonates, coal, and petroleum.

The presence of carbon in the atmosphere of the earth is 0.03%, in the form of carbon dioxide.

#### **Compounds of Carbon**

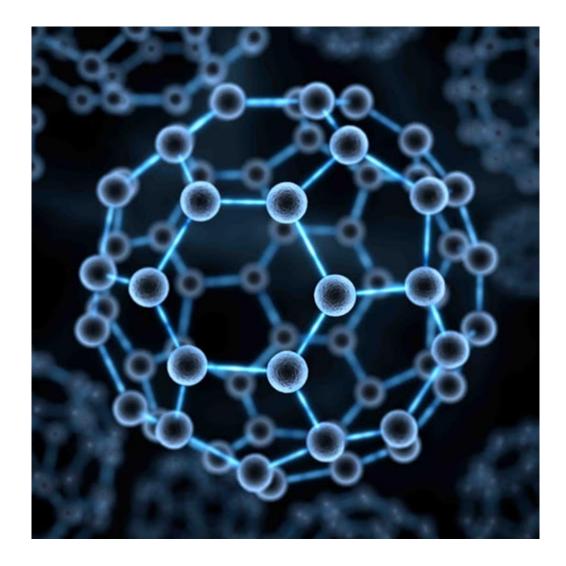

Almost all carbon compounds (except a few) are poor conductors of the electricity.

The diamond and graphite both are formed by carbon atoms; however, the difference lies between them in the manner in which the carbon atoms are bonded to one another.

In graphite, each atom of the carbon, is bonded to three other carbon atoms in the same plane, which gives a hexagonal array

In diamond, each atom of the carbon, is bonded to four other carbon atoms and form a rigid three-dimensional structure.






#### Allotropes of Carbon

**Allotropy:** The phenomenon in which the element exists in two or more different physical states with similar chemical properties are called Allotropy.

#### Carbon has Three Main Allotropes

- **Diamond:** In this, carbon, an atom is bonded to four other atoms of carbon forming three-dimensional structures. It is the hardest substance and an insulator. It is used for drilling rocks and cutting. It is also used for making jewellery.
- **Graphite:** In this, each carbon atom is bonded to three other carbon atoms. It is a good conductor of electricity and used as a lubricant.
- **Buckminster Fullerene:** It is an allotrope of the carbon-containing cluster of 60 carbon atoms joined together to form spherical molecules. It is dark solid at room temperature.

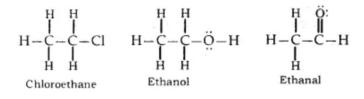


#### Physical Properties of Organic Compounds

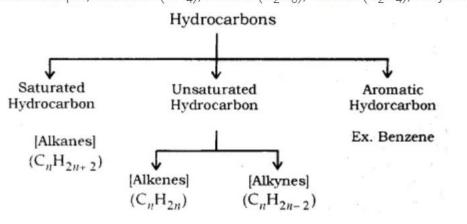
Most of the organic compounds have low boiling and melting point, due to the weak force of attraction (i.e., the inter-molecular force of attraction) between these molecules.

Most carbon compounds are poor conductors of electricity, due to the absence of free electrons and free ions.

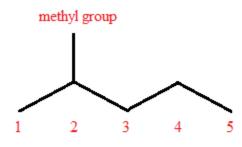
| Compounds                                    | M.P. (K) | B.P. (K) |
|----------------------------------------------|----------|----------|
| Acetic acid (CH <sub>3</sub> COOH)           | 290      | 391      |
| Chloroform (CHCl <sub>3</sub> )              | 209      | 334      |
| Ethanol (CH <sub>3</sub> CH <sub>2</sub> OH) | 156      | 351      |
| Methane (CH <sub>4</sub> )                   | 90       | 111      |


**Versatile Nature of Carbon:** The existence of such a large number of organic compounds is due to the following nature of carbon,

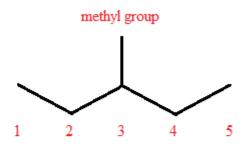
- Catenation
- Tetravalent nature.


(i) Catenation: The self linking property of an element mainly carbon atom through covalent bonds to form long straight, branched and rings of different sizes are called Catenation. This property is due to

- The small size of the carbon atom.
- The great strength of the carbon-carbon bond.


(ii) **Tetravalent Nature:** Carbon has valency of four. It is capable of bonding with four other atoms of carbon or some other heteroatoms with single covalent bond as well as double or triple bond.



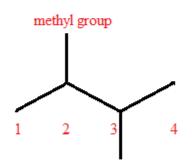

Hydrocarbons: Compounds of carbon and hydrogen are known as hydrocarbons. For example; Methane (CH<sub>4</sub>), Ethane (C<sub>2</sub>H<sub>6</sub>), Ethene (C<sub>2</sub>H<sub>4</sub>), Ethyne (C<sub>2</sub>H<sub>2</sub>) etc.



| Number of<br>'C' atoms | W ord<br>root | IUPAC<br>name | Structure      | Molecular<br>formula |
|------------------------|---------------|---------------|----------------|----------------------|
| 1                      | Meth          | Methane       | CH4            | CH4                  |
| 2                      | Eth           | Ethane        | СН3—СН3        | C2H6                 |
| 3                      | Prop          | Propane       | СН3—СН2—СН3    | C3H8                 |
| 4                      | But           | Butane        | СН3—(СН2)2—СН3 | C4H10                |
| 5                      | Pent          | Pentane       | СН3—(СН2)3—СН3 | C5H12                |
| 6                      | Нех           | Hexane        | СН3—(СН2)4—СН3 | C6H14                |
| 7                      | Hept          | Heptane       | CH3-(CH2)5-CH3 | C7H16                |
| 8                      | 0ct           | Octane        | СН3—(СН2)6—СН3 | C8H18                |
| 9                      | Non           | Nonane        | СН3—(СН2)7—СН3 | C9H20                |
| 10                     | Dec           | Decane        | СН3—(СН2)8—СН3 | C10H22               |

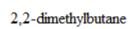


2-methylpentane




3-methypentane

methyl group methyl group


2

1



methyl group

2,3-dimethylbutane



3

4

| Class                        | General<br>Formula                  | Example                                                          | Common Name<br>(Systematic Name)     | Common<br>Suffix/Prefix<br>(Systematic) |  |  |  |  |  |  |  |  |  |  |
|------------------------------|-------------------------------------|------------------------------------------------------------------|--------------------------------------|-----------------------------------------|--|--|--|--|--|--|--|--|--|--|
|                              |                                     | Hydrocarbons                                                     |                                      |                                         |  |  |  |  |  |  |  |  |  |  |
| Alkanes                      | RH                                  | CH <sub>3</sub> CH <sub>3</sub>                                  | ethane                               | -ane                                    |  |  |  |  |  |  |  |  |  |  |
| Alkenes                      | RR'C=CR"R"                          | H <sub>2</sub> C==CH <sub>2</sub>                                | ethylene<br>(ethene)                 | -ene                                    |  |  |  |  |  |  |  |  |  |  |
| Alkynes                      | RC≡CR'                              | HC=CH                                                            | acetylene<br>(ethyne)                | (-yne)                                  |  |  |  |  |  |  |  |  |  |  |
| Arenes                       | $ArH^{a}$                           |                                                                  | benzene                              | -ene                                    |  |  |  |  |  |  |  |  |  |  |
| Halogen-Containing Compounds |                                     |                                                                  |                                      |                                         |  |  |  |  |  |  |  |  |  |  |
| Alkyl halides                | RX                                  | CH <sub>3</sub> CH <sub>2</sub> Cl                               | ethyl chloride<br>(chloroethane)     | halide<br>(halo-)                       |  |  |  |  |  |  |  |  |  |  |
| Aryl halides                 | $ArX^{a}$                           | CI                                                               | chlorobenzene                        | halo-                                   |  |  |  |  |  |  |  |  |  |  |
| Oxygen-Containing Compounds  |                                     |                                                                  |                                      |                                         |  |  |  |  |  |  |  |  |  |  |
| Alcohols                     | ROH <sup>a</sup>                    | CH <sub>3</sub> CH <sub>2</sub> OH                               | ethyl alcohol<br>(ethanol)           | -ol                                     |  |  |  |  |  |  |  |  |  |  |
| Phenols                      | $ArOH^{b}$                          | ОН                                                               | phenol                               | -ol                                     |  |  |  |  |  |  |  |  |  |  |
| Ethers                       | ROR'                                | H <sub>3</sub> CH <sub>2</sub> COCH <sub>2</sub> CH <sub>3</sub> | diethyl ether                        | ether                                   |  |  |  |  |  |  |  |  |  |  |
| Aldehydes                    | RCHO                                | O<br>Ⅲ<br>CH <sub>3</sub> CH                                     | acetaldehyde<br>(ethanal)            | -aldehyde<br>(-al)                      |  |  |  |  |  |  |  |  |  |  |
| Ketones                      | RR′C <del>—</del> O                 | CH <sub>3</sub> CCH <sub>3</sub>                                 | acetone<br>(2-propanone)             | -one                                    |  |  |  |  |  |  |  |  |  |  |
| Carboxylic acids             | RCO₂H                               | О<br>  <br>СН <sub>3</sub> СОН                                   | acetic acid<br>(ethanoic acid)       | -ic acid<br>(-oic acid)                 |  |  |  |  |  |  |  |  |  |  |
|                              | c                                   | arboxylic Acid Derivativ                                         | ves                                  |                                         |  |  |  |  |  |  |  |  |  |  |
| Esters                       | $RCO_2R'$                           | O<br>∥<br>CH₃COCH₃                                               | methyl acetate<br>(methyl ethanoate) | -ate<br>(-oate)                         |  |  |  |  |  |  |  |  |  |  |
| Amides                       | RCONHR'                             | O<br>  <br>CH <sub>3</sub> CNHCH <sub>3</sub>                    | N-methylacetamide                    | -amide                                  |  |  |  |  |  |  |  |  |  |  |
|                              | Nitro                               | ogen-Containing Comp                                             | ounds                                |                                         |  |  |  |  |  |  |  |  |  |  |
| Amines                       | RNH <sub>2</sub> , RNHR',<br>RNR'R" | CH <sub>3</sub> CH <sub>2</sub> NH <sub>2</sub>                  | ethylamine                           | -amine                                  |  |  |  |  |  |  |  |  |  |  |
| Nitriles                     | RC≡N                                | H <sub>3</sub> CC≡N                                              | acetonitrile                         | -nitrile                                |  |  |  |  |  |  |  |  |  |  |
| Nitro compounds              | ArNO <sub>2</sub> <sup>a</sup>      |                                                                  | nitrobenzene                         | nitro-                                  |  |  |  |  |  |  |  |  |  |  |

<sup>a</sup>R indicates an alkyl group <sup>b</sup>Ar indicates an *aryl* group.

| Homologous<br>Series | Prefix or<br>Suffix | Functional<br>Group | Example                                                        |
|----------------------|---------------------|---------------------|----------------------------------------------------------------|
| alkanes              | ane                 | )-с-н               | ethane<br>C <sub>2</sub> H <sub>6</sub>                        |
| alkenes              | ene                 | _c = c <            | ethene $C_2H_4$                                                |
| haloalkanes          | halo                | -CI -Br -I          | chloroethane<br>CH <sub>3</sub> CH <sub>2</sub> Cl             |
| alcohols             | ol<br>hydroxyl      | - OH                | ethanol or<br>hydroxyethane<br>CH₃CH₂OH                        |
| ethers               | alkoxy              | - OR                | methoxymethane<br>CH <sub>3</sub> OCH <sub>3</sub>             |
| aldehydes            | al                  | - ¢ <sup>≠0</sup> H | ethanal<br>CH₃CHO                                              |
| ketones              | one                 | ) c = 0             | propanone<br>CH <sub>3</sub> COCH <sub>3</sub>                 |
| carboxylic acid      | oic acid            | - ¢″_H              | ethanoic acid<br>CH₃COOH                                       |
| amines               | amino<br>amine      | - NH                | aminomethane<br>methylamine<br>CH <sub>3</sub> NH <sub>2</sub> |
| amides               | amide               | - c < NH            | ethanamide<br>CH₃CONH₂                                         |
| nitrils              | nitrile             | - C≡N               | propanentrile<br>CH₃CH₂CN                                      |

| masterorganicchemistry wordpress.com                                                                   | Boiling point increases with strength of the intermolecular interactions. | ublitty increases with polarity.<br>Notes                                                   | gives rise to greatest water<br>solubility (most polar)<br>also highest boling points |                                                | 2nd greatest for effect on water solubility and boiling points                     | Increases as electronegativity<br>difference increases<br>3rd greatest for effect on<br>water solubility and boiing<br>points | Increases with surface area<br>(increasing length of carbon<br>chains)<br>least for water solubility<br>least polar<br>best for solubility in non-polar<br>solvents (a n pentane) |                                             | Name                                                | Pentane             | Pentanol or pentyl alcohol<br>Pentyl chloride                             | Pentylamine       | Pentyl methyl ether             | Pentane thiol     | Pentene                                               | Pentanal                     | Butyl methyl ketone<br>OR 2-pentanone   | Pentanoic acid                          | Methyl pentanoate                        | N-methyl pentamide                           | Copyright 2010<br>James A Astendurat                          | way color version i to<br>james@ writechem.com                |
|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------|---------------------|---------------------------------------------------------------------------|-------------------|---------------------------------|-------------------|-------------------------------------------------------|------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|----------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|
| masterorganio                                                                                          | Bolling po                                                                | vvater sol<br>Strength                                                                      | Strongest                                                                             |                                                | 2nd strongest                                                                      | 2nd weakest                                                                                                                   | Weakest                                                                                                                                                                           |                                             | Example                                             | <                   |                                                                           | < NH <sup>2</sup> |                                 | HS                | 2                                                     | Ť                            | <sup>₩</sup>                            | °=                                      | OMe                                      | NHMe                                         | ~                                                             | la 1,4                                                        |
| ility                                                                                                  | Chemietry.                                                                | Example                                                                                     | NH4⊕CI⊖                                                                               | H,0,H,                                         | н,0,н<br>Н,0,н                                                                     |                                                                                                                               | Name                                                                                                                                                                              |                                             |                                                     |                     |                                                                           |                   |                                 |                   |                                                       | /                            | /                                       | /                                       | /                                        | /                                            | -«<br>\                                                       | 1,3<br>meta                                                   |
| d Water Solub                                                                                          | 3onding in Organic (                                                      | Found in                                                                                    | Salts                                                                                 |                                                | Water, alcohols<br>carboxylic acids<br>amides, amines                              | ketones, aldehydes,<br>esters, alkyl halides,<br>etc any molecule<br>with a strongly<br>electron (O, N, F, Cl, Br)            | Hydrocarbons                                                                                                                                                                      |                                             |                                                     | Alkyl               | Hydroxyl<br>Halide                                                        | Amine             | Ether                           | Thiol             | Alkene                                                | Aldehyde                     | Ketone                                  | Carboxylic<br>acid                      | Ester                                    | Amide                                        | 4                                                             | ortho                                                         |
| Boling Points, an                                                                                      | The Four Types of Intermolecular Bonding in Organic Chemistry             | Type of<br>Interaction                                                                      | Attraction<br>between<br>point charges                                                |                                                | Attraction between<br>positively charged H<br>and negatively charged<br>O, N or F. | Attraction between<br>dipole moments<br>caused by differences<br>in electron egativity                                        | Attraction between temporary dipoles                                                                                                                                              |                                             | Functional Group                                    | Ŧ                   | -OH<br>-CI, -Br, -F, -I                                                   | -NH2              | R. <sup>O.</sup> R              | HS-               | $\tilde{\mathbf{v}} = \mathbf{v}$                     | R^C=0                        | R-0=0<br>R                              | R^CCOH                                  | R-C-OR                                   | R-C-NH <sub>2</sub>                          | to remember:                                                  | R Trans                                                       |
| ivity, Nomenclature, I                                                                                 | The Four                                                                  | Name                                                                                        | lonic                                                                                 |                                                | Hydrogen<br>Bonding                                                                | Dipole-<br>Dipole                                                                                                             | Van Der Waals<br>(London forces)                                                                                                                                                  |                                             | pons                                                | 1 Meth-             |                                                                           |                   | 6 Hex-                          | 7 Hept-<br>8 Oct- |                                                       | 10- Dec-                     | Primary: attached to ONE<br>carbon atom | Secondary: attached to TWO carbon atoms | Tertiary: attached to THREE carbon atoms | Quaternary: attached to FOUR<br>carbon atoms | Other important things to remember:                           | Phenyl isopropand<br>(e.g. phenyl e.g. isopropand<br>bromide) |
| Summary Sheet - Introduction to Chemical Reactivity, Nomenclature, Boling Points, and Water Solubility | Notes                                                                     | cis addition (hydrogens go<br>on same side of alkene)                                       | amines but NOT amides<br>(amides are not basic on nitrogen)                           |                                                | We use the alcohol as solvent.                                                     | This is the reverse of the above reaction.<br>Here we use water as solvent.                                                   | This is called ester hydrolysis<br>or saponification                                                                                                                              | alcohol forms on most<br>substituted carbon | (markovnikorr rule)<br>proceeds through carbocation | halide adds to most | substituted carbon<br>(Markovnikoff rule)<br>proceeds through carbocation |                   | Results in <i>trans</i> product |                   |                                                       | Note that secondary alcohols |                                         | ŭ                                       | 10 1995 1                                | # of equivalents)                            | Also gives 1,4 (para) product<br>but never 1,3 (meta) product |                                                               |
| neet - Introdu                                                                                         | -                                                                         | H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H | R∕NH <sub>3</sub> CI                                                                  | Ph <sup>→</sup> →O <sup>EtNH<sub>3</sub></sup> | RYOMe                                                                              | o=√<br>E                                                                                                                      | o≓r                                                                                                                                                                               | HOL L                                       | HC HC                                               | a                   | ,<br><sup>₽</sup> C <sup>₽</sup>                                          |                   |                                 | œ—                | E E                                                   | в Ч                          | -œ                                      |                                         |                                          | :                                            | <b>≖</b> →                                                    | RS-SR                                                         |
| nmary Sh                                                                                               | Example                                                                   | Pd/C, H <sub>2</sub>                                                                        |                                                                                       | EtNH2                                          | MeOH<br>H₂SO4, ∆                                                                   | H <sub>2</sub> O,<br>H <sub>2</sub> SO <sub>4</sub> , Δ                                                                       | H <sub>2</sub> O,<br>NaOH                                                                                                                                                         | Ŕ                                           | H <sub>2</sub> O                                    |                     | ਦ<br>ਦ                                                                    |                   | Br <sub>2</sub>                 | CH K2CrO7         |                                                       | -1                           |                                         | KMnO4<br>H <sub>2</sub> O               | Cl <sub>2</sub> , h <sub>7</sub>         |                                              | Br <sub>2</sub> , FeBr <sub>3</sub>                           |                                                               |
| Sur                                                                                                    |                                                                           | Ĩ                                                                                           | ~                                                                                     | Ph Hot                                         | o≓                                                                                 | R OMe                                                                                                                         | RAOMe                                                                                                                                                                             | œ <b>-4</b>                                 | R CH2                                               | a                   | R, Koh2                                                                   |                   | R R                             |                   | · ·                                                   | 2                            | a::                                     | HO                                      | R Me                                     | :                                            | α-{_}                                                         | R-SH                                                          |
|                                                                                                        | Product                                                                   | Alkane                                                                                      | Ammonium<br>salt                                                                      | Salt<br>(Carboxylate Ph                        | Ester                                                                              | Carboxylic<br>acid                                                                                                            | Carboxylic<br>acid                                                                                                                                                                |                                             | AICONO                                              |                     | Alkyl<br>halide                                                           |                   | Dibromide                       | Carbovulic acid   | (primary alcohol)<br>OR ketone<br>(secondary alcohol) |                              |                                         | Carboxylic acid<br>(primary alcohol)    | Alkyl chloride                           |                                              | Aryl bromide                                                  | Disulfide                                                     |
|                                                                                                        | Reactant #2                                                               | Pd/C + H <sub>2</sub>                                                                       | Acid                                                                                  | Base                                           | Alcohol,<br>acid, heat                                                             | Water,<br>acid, heat                                                                                                          | Water,<br>base                                                                                                                                                                    |                                             | water, acid                                         |                     | Strong acid                                                               |                   | Br <sub>2</sub>                 |                   | 2002                                                  |                              |                                         | KMnO <sub>4</sub> C                     | Cl <sub>5</sub> , h <sub>7</sub>         | (or peroxides)                               | Br <sub>2</sub> , FeCl <sub>3</sub>                           | "Oxidant"                                                     |
|                                                                                                        | Reactant #1                                                               | Alkene                                                                                      | Amine                                                                                 | Carboxylic<br>acid                             | Carboxylic<br>acid                                                                 | त्र<br>स                                                                                                                      | Ester                                                                                                                                                                             | :                                           | Alkene                                              |                     | Alkene                                                                    |                   | Alkene                          |                   | Alconol                                               |                              |                                         | Alcohol                                 | Alkane                                   |                                              | Benzen e<br>derivative                                        | Thio                                                          |

